On metrical theory of diophantine approximation over imaginary quadratic field
نویسندگان
چکیده
منابع مشابه
Metrical Diophantine approximation for quaternions
The metrical theory of Diophantine approximation for quaternions is developed using recent results in the general theory. In particular, Quaternionic analogues of the classical theorems of Khintchine, Jarnı́k and Jarnı́k-Besicovitch are established. Introduction Diophantine approximation begins with a more quantitative understanding of the density of the rationals Q in the reals R. The starting p...
متن کاملA note on zero-one laws in metrical Diophantine approximation
q ψ(q) diverges but A(ψ) is of zero measure. In other words, without the monotonicity assumption, Khintchine’s theorem is false and the famous Duffin-Schaeffer conjecture provides the appropriate statement. The key difference is that in (1), we impose coprimality on the integers p and q. Let A(ψ) denote the resulting subset of A(ψ). The Duffin-Schaeffer conjecture states that the measure of A(ψ...
متن کاملDiophantine Equations and Class Numbers of Imaginary Quadratic Fields
Let A,D, K, k ∈ N with D square free and 2 | /k, B = 1, 2 or 4 and μi ∈ {−1, 1}(i = 1, 2), and let h(−21−eD)(e = 0 or 1) denote the class number of the imaginary quadratic field Q( √−21−eD). In this paper, we give the all-positive integer solutions of the Diophantine equation Ax +μ1B = K ( (Ay +μ2B)/K )n , 2 | / n, n > 1 and we prove that if D > 1, then h(−21−eD) ≡ 0(mod n), where D, and n sati...
متن کاملMetric Diophantine Approximation over a Local Field of Positive Characteristic
We establish the conjectures of Sprindžhuk over a local field of positive characteristic. The method of KleinbockMargulis for the characteristic zero case is adapted.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Arithmetica
سال: 1988
ISSN: 0065-1036,1730-6264
DOI: 10.4064/aa-51-4-393-403